java培训
美国上市Java培训机构

400-111-8989

热门课程

生产环境sql语句调优实例讲解

  • 时间:2017-01-06
  • 发布:Java培训
  • 来源:java教程

生产环境sql语句调优实战篇

生产环境中的sql语句执行时间是很关键的性能指标,如果某个sql语句执行几个小时,优化以后几分钟,几十秒的话。会有很大的成就感,同时如果某个sql语句执行10秒,能够优化到1秒,感觉提升的幅度不是很大,但是如果这条语句执行极为频繁的话,那这种调优还是更有成就感的。

执行时间是sql调优的一把标尺,但是同时也需要考虑到系统资源的平衡。

今天在系统中发现一条sql语句执行时间很长。平均一个查询要执行一个半小时左右,而且系统的资源消耗极大。

需要说明的service_details 是数据量过亿的表。ch_distribute 是千万级的表,subscriber是百万级的表。

payment是千万级的表,paychannel是百万级的表。

查看执行计划,倒看不出有明显的异常,这也就是执行计划的一个误区了,我们不能总是参考执行计划来进行调优,很多时候发现执行计划几乎是完美的,但是执行效率却很长。

sql语句如下所示。

SELECT cd.target_pcn, se.agreement_no, s.subscriber_no, s.prim_resource_val

FROM ch_distribute CD, service_details SE, subscriber S

WHERE cd.target_pcn IN

(SELECT

cp.pym_channel_no

FROM paychannel cp, payment pym

WHERE cp.pym_channel_no IN

(SELECT cd.target_pcn

FROM ch_distribute cd

WHERE (cd.agreement_no, cd.soc, cd.soc_seq_no) IN

(SELECT sg.agreement_no, sg.soc, sg.soc_seq_no

FROM service_details sg

WHERE sg.soc_status = 'A'

AND sg.agreement_no IN

(SELECT

sg.agreement_no

FROM service_details sg, subscriber s

WHERE s.subscriber_no = sg.agreement_no

AND sg.soc = 50412

AND sg.soc_status = 'A'

AND sg.soc_sts_rsn_cd =

(SELECT param_values

FROM small_table

WHERE param_name =

'XXXXXXXX1'

AND job_name = 'XXXXXX') --bottleneck

AND s.subscriber_type IN

(SELECT param_values

FROM small_table

WHERE param_name = 'XXXXXXXX2'

AND job_name = 'XXXXXX')

))

AND expiration_date IS NULL)

AND cp.ban = pym.account_id

AND (pym.transaction_id >

(SELECT param_values

FROM small_table

WHERE param_name = 'XXXXXXXX3'

AND job_name = 'XXXXXX') AND

pym.transaction_id <= 255004442))

AND se.agreement_no = cd.agreement_no

AND s.subscriber_no = se.agreement_no

GROUP BY cd.target_pcn,

se.agreement_no,

s.subscriber_no,

s.prim_resource_val

猛一看这个查询语句还是挺臃肿的,可以明显的看到反复引用了大表service_details,chg_distribute.

我先把这个问题发给一个性能调优的哥们,他在不改动sql语句的前提下,加了几个Hint,执行时间就从1个半小时降低到4分钟左右,猛一看这是一个极大的提升,看似不用修改sql语句了。

我看了下他建议的hint,从执行时间来说,是很大的提升,但是从系统的资源消耗来看,还存在一定的隐患,建议的Hint如下:

SELECT /*+parallel(pym,4) full(pym) use_hash(pym)*/

cp.pym_channel_no

SELECT /*+PARALLEL(S,4) full(S) FULL(SG) PARALLEL(SG,4) USE_HASH(S,SG)*/

sg.agreement_no

FROM service_details sg, subscriber s

两个Hint本身也没有什么问题,对于大表的关联用hash_join效率比nested loop要高很多。加上并行,如果查询执行不够频繁,涉及的表不多,确实是很好的选择。

我个人的观点还是从语句本身入手,先来看看有什么可以从结构中的改进,先在头脑中有一个基本的思路,然后主要查找数据的性能瓶颈到底在哪,因为根据在备份库上的测试,这个查询返回的数据条数在几千条左右,从上亿条,上千万的数据中排查出几千条肯定是有一些关键的过滤条件。

使用并行固然好,如果在不使用并行的条件下,高效的使用索引是更好的选择。如果实在条件所限,对个别做表全表扫描速度也是很快的。

在分析了数据的统计信息,索引情况之后,在备份库中进行了简单的数据筛查。

首先定位了性能瓶颈,是如下的这个查询条件。通过如下的条件能够过滤掉99%以上的数据,剩下的数据和其它大表关联,都是可以使用到索引的,速度就会快很多。

select *from agreement_no from service_details sg

where

sg.soc = 50412 and sg.soc_status = 'A'

有了这个思路,修改起来就轻松多了.

有了主要的改进,其他的改进就可以锦上添花了。

还有两个需要修改的部分。

一个是简化sql语句的表关联,可以看到很多的表出现了多次,这对查询本身来说也不是必须的,个人认为这个sql语句是在开发人员边开发,变修改导致了查询语句嵌套了很多重复的关联。

一个是关于子查询的优化。有几个子查询会关联到一个小表,对小表中的数据进行反复关联。这对子查询而言,执行频率是极高的。

SELECT param_values

FROM small_table

WHERE param_name =

'XXXXXXXX1'

AND job_name = 'XXXXXX'

对于这种特别的子查询,可以考虑使用with语句来替代。改进后的语句如下,这样看就清晰多了。

with ssrc as (SELECT param_values

FROM small_table

WHERE param_name = 'XXXXXXXX1'

AND job_name = 'XXXXXX') ,

sub_type as (SELECT param_values

FROM small_table

WHERE param_name = 'XXXXXXXX2'

AND job_name = 'XXXXXX'),

hr_pay_trx as (SELECT param_values

FROM small_table

WHERE param_name = 'XXXXXXXX3'

AND job_name = 'XXXXXX')

SELECT

cp.pym_channel_no,sg.agreement_no, s.subscriber_no, s.prim_resource_val

FROM service_details sg, subscriber s,chg_distribute chg,paychannel cp,sub_type,ssrc

WHERE s.subscriber_no = sg.agreement_no

AND sg.soc = 50412

AND sg.soc_status = 'A'

AND sg.soc_sts_rsn_cd =

ssrc.param_values --bottleneck

AND s.subscriber_type =sub_type.param_values

and sg.agreement_no=chg.agreement_no

and sg.soc=chg.soc

and sg.soc_seq_no=chg.soc_seq_no

and chg.expiration_date is null

and cp.pym_channel_no=chg.target_pcn

and exists(

select 1 from ar1_payment pym,hr_pay_trx

where cp.ban = pym.account_id

AND (pym.transaction_id > hr_pay_trx.param_values

AND

pym.transaction_id <= :1))

可以看到from后面跟了好几个大表,但是性能瓶颈在service_details上所以为了保险起见,我们可以使用hint来指定表的访问顺序。先过滤到99%以上的数据,剩下的就可以自然的走索引扫描了。

添加的Hint如下,对于表service_details,因为没法使用到索引,所以就对这一个表进行全表扫描,走个并行。

SELECT /*+leading(ssrc,sub_type,sg,s,chg,cp) parallel(sg 4) full(sg)*/

cp.pym_channel_no,sg.agreement_no, s.subscriber_no, s.prim_resource_val

最后在备份库中测试,效果果然很明显,备份库中速度从优化后的4分钟降低到2分钟。

在生产环境中执行,速度更快,稳定在40秒左右。

上一篇:C++、Java、JavaScript中的正则表达式
下一篇:2016 Java程序员的年终总结

Java教程之单例设计模式

Java 8 时间日期库的20个使用示例

Spring4支持Java8的哪些新功能?

生产环境sql语句调优实例讲解

选择城市和中心
贵州省

广西省

海南省

台湾